Sequence Independent Lifting for Mixed-Integer Programming
نویسنده
چکیده
Lifting is a procedure for deriving strong valid inequalities for a closed set from inequalities that are valid for its lower dimensional restrictions. It is arguably one of the most effective ways of strengthening linear programming relaxations of 0–1 programming problems. Wolsey (1977) and Gu et al. (2000) show that superadditive lifting functions lead to sequence independent lifting of valid inequalities for monotone 0–1 programming and for monotone mixed 0–1 programming, respectively. We show that this property holds for general mixed-integer programming (MIP) as well if lower dimensional restrictions are obtained by setting integer variables to a bound. Lifting with general integer variables is computationally harder than lifting with 0–1 variables, because the former requires the solution of nonlinear integer problems rather than linear integer problems. Here we see that nonlinearity in lifting problems is resolved easily with superadditive lifting functions. The results presented here may pave the way for efficient applications of lifting with general integer variables.
منابع مشابه
A fuzzy mixed-integer goal programming model for a parallel machine scheduling problem with sequence-dependent setup times and release dates
This paper presents a new mixed-integer goal programming (MIGP) model for a parallel machine scheduling problem with sequence-dependent setup times and release dates. Two objectives are considered in the model to minimize the total weighted flow time and the total weighted tardiness simultaneously. Due to the com-plexity of the above model and uncertainty involved in real-world scheduling probl...
متن کاملLifted Inequalities for 0 − 1 Mixed - Integer Bilinear Covering Sets ∗
4 In this paper, we study 0−1 mixed-integer bilinear covering sets. We derive several families of facet5 defining inequalities via sequence-independent lifting techniques. We then show that these sets have 6 polyhedral structures that are similar to those of certain fixed-charge single-node flow sets. As a result, we 7 obtain new facet-defining inequalities for these sets that generalize well-k...
متن کاملLifting for conic mixed-integer programming
Lifting is a procedure for deriving valid inequalities formixed-integer sets from valid inequalities for suitable restrictions of those sets. Lifting has been shown to be very effective in developing strong valid inequalities for linear integer programming and it has been successfully used to solve such problems with branch-and-cut algorithms. Here we generalize the theory of lifting to conic i...
متن کاملLifted flow cover inequalities for mixed 0-1 integer programs
We investigate strong inequalities for mixed 0-1 integer programs derived from flow cover inequalities. Flow cover inequalities are usually not facet defining and need to be lifted to obtain stronger inequalities. However, because of the sequential nature of the standard lifting techniques and the complexity of the optimization problems that have to be solved to obtain lifting coefficients, lif...
متن کاملExact Mixed Integer Programming for Integrated Scheduling and Process Planning in Flexible Environment
This paper presented a mixed integer programming for integrated scheduling and process planning. The presented process plan included some orders with precedence relations similar to Multiple Traveling Salesman Problem (MTSP), which was categorized as an NP-hard problem. These types of problems are also called advanced planning because of simultaneously determining the appropriate sequence and m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Operations Research
دوره 52 شماره
صفحات -
تاریخ انتشار 2004